Equilibrium

1. Balance the following reactions if they are not balanced already and then write the equilibrium constant expression for each reaction:

$$Ni(s) + CO_2(g) \leftrightarrow CO(g) + NiO(s)$$
 no solids in K_c expressions $K_c = \frac{CO_2}{CO_2}$

$$V_{C} = \frac{V_{C}(g) + O_{2}(g)}{V_{C}} + \frac{V_{C}(g)}{V_{C}} + \frac{V_{C}(g$$

Ba(NO₃)₂ (aq) + Na₂SO₄ (aq)
$$\longleftrightarrow$$
 BaSO₄ (s) +1 NaNO₃ (aq)
$$h_{C} = \frac{[NcNO_3]^3}{[Bc(NO_3)_2][Nc_2]}$$

2. For the system, if we start with 0.100 mol/L of CO_2 and H_2 , what are the concentrations of the reactants and products at equilibrium given that $K_{eq} = 0.64$ at 900K:

of the reactants and products at equinorium given that $K_{eq} = 0.04$ at 900K:					
R \	CO2+	H2 =	CO +	H20	They=[Ca][H2O] - (X)(X)
I	0.100M	0.100M	0	0	(CO3)[H2] (0:100-x)2
C	-X	- X	+ X	+ X	$0.64 = \sqrt{x^2}$
E	0.100-	0.100 -	X	X	(0.100 W
E 0.100-0.100- X X = 0.80 = x					
1.80x=0.000 -0.80x=1X					
X=0.04144 COT= (H-07= 0.080 =0.80)					
X=0.0449 [CO]= 0.0444M					
[CO2]=[H2]=0.0556 M					

3. Calculate the equilibrium constant for the following hypothetical reactions. Assume that all components of the reactions are gaseous:

a)
$$A \leftarrow \rightarrow C + D$$
 heq : $C > C > C$

At equilibrium, the concentration of A is $2.24 \times 10^{-2} \,\mathrm{M}$ and the concentrations of both C and D are $6.41 \times 10^{-3} \,\mathrm{M}$:

Dare 6.41 x
$$10^{-3}$$
 M:

They = $\frac{[0.41] \times [0^{-3}][0.41] \times [0^{-3}]}{[2.24] \times [0^{-2}]} = \frac{[(6.41) \times [0^{-3}]]}{[2.24] \times [0^{-2}]}$

Wey = $1.83 \times [0^{-3}]$

At equilibrium, the concentrations of both A and B are 3.23×10^{-5} M and the concentrations of both C and D are 1.27×10^{-2} M:

They =
$$\frac{[1.27 \times 10^{-2}][1.27 \times 10^{-2}]}{[3.23 \times 10^{-3}][53.23 \times 10^{-5}]}$$

= $\frac{[1.27 \times 10^{-2}]^2}{[3.23 \times 10^{-5}]^2}$
 $\frac{[3.23 \times 10^{-5}]^2}{[3.23 \times 10^{-5}]^2}$