
Exam 1 Test Prep

1.	What are the five factors that affect the rate of reactions?
2.	What are the three factors that affect solubility?
3.	Calculate the molarity of 3.7 moles of NaCl in 0.740 L solution:
4.	Calculate the number of moles of solute in 36.0 mL of 5.00 M H ₂ SO ₄ :
5.	Calculate the molality of 72.0 grams NaCl in 89.0 grams of H ₂ O:
6.	Rank the following solutions from lowest to highest boiling point, a 2.5 m solution of sodium chloride, a 3.5 m solution of magnesium chloride, or a 4.5 solution of sulfur dioxide:

11. A scientist conducts an experiment to determine the rate of the following reaction:

 $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$

If the initial concentration of N_2 was 0.500 M and the concentration of N_2 was 0.450 M after 0.100s, what is the rate of the reaction?

12. Given the following data, determine the rate law expression of the reaction:

$$2NO(g) + Cl_2(g) \implies 2NOCl(g)$$

Experiment	[NO] (M)	[Cl ₂] (M)	Rate (M/s)
1	0.0300	0.0100	3.4 x 10 ⁻⁴
2	0.0150	0.0100	8.5 x 10 ⁻⁵
3	0.0150	0.0400	3.4 x 10 ⁻⁴

 $6.93 \times 10^{-3} \text{ s}^{-1}$. What will be the concentration of N₂O₅?

12. Balance the following expressions if they are not balanced already and then write the equilibrium expression for the following reactions:

$$NO(g) + Br_2(g) \leftarrow \rightarrow NOBr(g)$$

$$N_2O_5(g) \leftarrow \rightarrow NO_2(g) + O_2(g)$$

13. At a given temperature, the K_{eq} for the following reaction is 1.40 x 10⁻². If the concentration of both H_2 and I_2 at equilibrium are 2.00 x 10⁻⁴ M, find the concentration of HI at equilibrium:

$$2HI(g) \leftarrow \rightarrow H_2(g) + I_2(g)$$