Exam 2 Test Prep

% Ionization	Buffer	pН	Common-Ion	Irreversible
			Effect	Reaction
Cation	Oxyacid	Anion	рОН	Equivalence
				Point
Binary Acid	Lewis Acid	Titration	Reversible	Bronsted-Lowry
			Reaction	Base
Lewis Base	Hydrolysis	Carboxylic Acid	Amphoteric	Bronsted-Lowry
				Acid

1. An acid that consists of an H, O, and one other element, which is a nonmetal, is an:
2. An acid that consists of an H and one other element is a:
3. A proton donor:
4. The quantity of weak acid that ionizes in a solution, expressed as a percentage:
5. A negatively charged ion:
6. When the amount of acid is equal to the amount of base in a titration/reaction:
7. A proton acceptor:
8. A positively charged ion:
9. An organic acid that contains the -COOH group:
10. Represents the hydrogen ion concentration:
11. If we have a solution containing several types of ions and equilibrium is achieved, when we add another species containing the same ion, to the existing solution, reduction in the degree of dissociation of the first species is observed.
12. A solution of a weak conjugate acid-base pair that resists drastic changes in pH:
13. The chemical breakdown of a compound due to its reaction with water:
14. Represents the hydronium ion concentration:
15. An e ⁻ pair acceptor:
16. A technique in which an acid or base of known concentration is added to an acid or base of unknown concentration:

17. The system must take a	another path to return to the original state:
18. An e ⁻ pair donor:	
19. A compound that can a	act as either an acid or a base:
20. The system can follow	the same path in reverse to get back to the original state:
	444 A
1. Calculate the pH of 0.00	0125 M HCl ($K_a = 3.5 \times 10^{-2}$)

2. What is the pH of a buffer that is 0.12 M in lactic acid (HC $_3$ H $_5$ O $_3$) and 0.10 M in sodium lactate? For lactic acid, $K_a = 1.4 \times 10^{-4}$

$$HC_3H_5O_3$$
 (aq) $\leftarrow \rightarrow H^+$ (aq) $+ C_3H_5O_3^-$ (aq)

3. The K_a for niacin (C_5H_4NCOOH) is 1.6 x 10^{-5} . What is the pH of a 0.010 M solution of niacin?

 $C_5H_4NCOOH \leftarrow \rightarrow C_5H_4NCOOH^- + H^+$

5. Calculate the pH of 0.119 M pyridine:

$$C_5H_5N + H_2O \leftarrow \rightarrow C_5H_5NH^+ + OH^-$$

6. Find the molar solubility of Ag_2CrO_4 in pure water if the solubility product constant for silver chromate is 1.1×10^{-12} .

$$Ag_2CrO_4 \rightarrow 2Ag^+ + CrO_4^{2-}$$

7. What are ways that we can make a buffer?

14. Vinegar is a dilute solution of acetic acid (HC2H3O2). If the concentration of HC2H3O2 in a vinegar solution is 0.240M, calculate the percent ionization of acetic acid. ($Ka = 1.75 \times 10^{-5}$)