Exam 1 Test Prep Vocab

Equilibrium	Saturated	Dissolution	Rate	Activation	Molecularity
	Solution			Energy	
Solute	Unsaturated	Solubility	Le	Van't Hoff	Catalyst
	Solution		Chatelier's	Factor	
			Principle		
Solvent	Rate Law	Substrate	Equilibrium	Elementary	Reaction
			Constant	Step	Mechanism
Intermolecular	Colligative	Transition	Rate-	Reversible	Intermediate
Forces	Properties	State	Determining	Reaction	
			Step		

- 1. Elementary Step Each step in a chemical reaction
- 2. <u>Le Chatcher's Pund</u> off a system at equilibrium is disturbed, it will react in such a way as to counteract the disturbance and return to equilibrium
- 3. Actualism Ingray Energy which a reacting species must have to form the transition state
- 4. <u>In termedicte</u> A species that is formed and used up; will not appear in rate law
- 5. Number of molecules reacting in a step
- 6. <u>Substrate</u> The substance which undergoes reaction
- 7. <u>hate</u> The speed of a reaction
- 8. Saute The component that is dissolved in a solution
- 9. <u>ICMS hon Style</u> (Activated complex) state corresponding to the highest energy along the reaction coordinate
- 10. Reactions that can proceed in either direction
- 11. Schure kel Solution Maximum amount of solvent dissolved at a certain temperature
- 12. Collegative Rope vtvs Solution properties that depend upon only quantity of solute
- 13. Rete- Deter mining The slowest step in a reaction
- 14. \(\) \(
- 15. <u>Catalyst</u> a substance that speeds up the rate of the reaction without causing permanent change
- 16. heachen Mechanism Detailed sequence of reaction steps

- 17. Mischurded Solution Contains less than the optimal amount of solute

 18. Equilibrium State when forward and reverse reactions become equal

 19. Salvent The component of a solution that retains its original phase

 20. Rate law The mathematical expression relating rate to concentration

 21. Dissalvent The process of dissolving

 22. Intermolecular Forces between a solvent and a solute

 23. Salventy The maximum concentration that a solution can achieve with respect to a particular solute
- 24. Equilibrium Constant K, the value of the reaction quotient at equilibrium